# **Population PK Modelling of Treosulfan in Paediatric Allogeneic Transplant Patients**

T. Reijmers<sup>1</sup>, C. Hemmelmann<sup>2</sup>, K-W. Sykora<sup>3</sup>, A. Vora<sup>4</sup>, J. Kehne<sup>2</sup>, A-K. Möller<sup>2</sup>, J. Baumgart<sup>2</sup>, J. Elassaiss-Schaap<sup>1,5</sup>

# medac

### Introduction

Venn Life Sciences

Treosulfan, a bifunctional alkylating prodrug, is currently being developed by medac GmbH as a component of conditioning treatment prior to haematopoietic stem cell transplantation (HSCT) in adults and children. An initial population PK model was developed to provide dose recommendations for the new medac-sponsored trials MC-FludT.16/NM (EudraCT-Number: 2013-005508-33) and MC-FludT.17/M (EudraCT-Number: 2013-003604-39) in paediatric patients from 1 month to 18 years of age. During interim analyses, this model was updated with new paediatric PK-data from trials MC-FludT.16/NM and MC-FludT.17/M to verify (in addition to clinical safety and efficacy data) the current dose recommendations or support a potential dose modification. In addition to the data covering different age groups, the model also needed to handle data that was measured with different bioanalytical methods.

## Objectives

- Build a population PK model that adequately characterizes Treosulfan pharmacokinetics in the paediatric target population
- Investigate which covariates influence Treosulfan exposure
- Draft model-based dose recommendations for paediatric patients
- Update the population PK model after new paediatric patients data becomes available

### Data

- Historical PK data: 7 previously conducted clinical trials: 93 PK profiles from adults & 23 children
- New PK data: 2 paediatric clinical trials: 17 & 59 children PK samples from new paediatric trials are measured

| with a new validated bioanalytical method |       |       |       |       |       |       |       |
|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| BSA Group                                 | Hist1 | Hist2 | Hist3 | Hist4 | Hist5 | Hist6 | Hist7 |
| ≤ 0.5 m <sup>2</sup>                      | 0     | 1     | 0     | 0     | 7     | 0     | 0     |
| >05 10m <sup>2</sup>                      | 2     | 0     | 0     | 0     | 6     | 0     | 0     |

| > 1.0 m                   | 2 | 18             | 4    | 20        | 18   | 1         | 24   | 15 |
|---------------------------|---|----------------|------|-----------|------|-----------|------|----|
| Total                     |   | 20             | 5    | 20        | 18   | 14        | 24   | 15 |
|                           | в | SA Grou        | o Mo | C-FludT.1 | 6/NM | MC-FludT. | 17/M |    |
| ≤ 0.5 m²                  |   |                | 4    |           | 7    |           |      |    |
| $> 0.5 - 1.0 \text{ m}^2$ |   | m <sup>2</sup> | 11   |           | 25   |           |      |    |

> 1.0 m<sup>2</sup> Total

27

59

# Approach

17

- · Identify covariate-PK model parameter relations that explain differences between adult and paediatric subpopulations
- Introduce additional SHIFT parameter in population PK model to explain differences between historical and new datasets caused by usage of different bioanalytical methods
- · For modelling different subpopulations (adult vs. children) both a dichotomization approach and use of a Bayesian prior were evaluated

Both approaches gave similar results, ultimately the approach closest to the initial population PK model, the dichotomization approach, was chosen.

## PK model Treosulfan in Paediatric Patients

- The population PK model for Treosulfan consisted of two compartments with first-order distribution and elimination processes
- Covariate analysis revealed that body surface area (BSA) was the only relevant covariate for clearances and volumes of distribution (other covariates tested: age, weight, sex, creatinine clearance and use of diuretics)
  - New paediatric patients data resulted in inclusion of a shift parameter (on model prediction parameter F in \$ERROR) allowing modelling of data from the new paediatric trials measured with a different validated bioanalytical method



#### Implementation in NONMEM

- V1: Volume of distribution of central compartment [L]
- CL: Clearance [L/h]
- V2: Volume of distribution of peripheral compartment [L]
- Q: Inter-compartmental clearance [L/h]
- BSA: Body Surface Area [m<sup>2</sup>]
- SHIFT: Compensation for different bioanalytical methods

#### Software

Non-linear mixed effects modelling was performed using NONMEM (v7.1.0, Method FOCE INTER) with gfortran (v4.5.0) together with PsN (v3.4.2) and R (v3.2.2).

## **Results Population PK Modelling of Treosulfan**

|                 | le   | arameter Tab | Pa        |
|-----------------|------|--------------|-----------|
|                 | % SE | Estimate     | Parameter |
|                 | 11.6 | 19.0         | V1        |
| ata             | 2.41 | 17.7         | CL        |
| Historical data | 7.24 | 20.3         | V2        |
| toric           | 14.3 | 26.1         | Q         |
| His             | 9.87 | 1.22         | β(BSA,V1) |
|                 | 4.57 | 1.18         | β(BSA,CL) |
|                 | 11.3 | 1.74         | β(BSA,V2) |
| 1               | 22.6 | 1.45         | β(BSA,Q)  |
| data            | 4.83 | 1.36         | SHIFT     |
| 3               | 21.0 | 0.149        | Ω(V1)     |
| Ne              | 16.2 | 0.0616       | Ω(CL)     |
| \$ T_           | 33.7 | 0.0668       | Ω(V2)     |
| s               | 33.7 | 0.203        | Ω(Q)      |
| C               | 9.91 | 0.0482       | σ         |

variability on the model parameter and  $\sigma$  denotes the variance of the residual error

#### Goodness-of-Fit Plots





ded areas indicate concentration regions in which 95% of the simulated concentration values are tained and circles display measured concentration values [ug/mL] over time [hr].

#### **Dose Recommendations**



| ≤ 0.4 m²                   | 10 g/m <sup>2</sup> |
|----------------------------|---------------------|
| > 0.4 – 0.8 m <sup>2</sup> | 12 g/m <sup>2</sup> |
| > 0.8 m <sup>2</sup>       | 14 g/m <sup>2</sup> |

ased on the estimated population PK model, the functional relationship between clearance nd BSA was derived. The dose resulting in a similar exposure as the effective exposure in adults as calculated for paediatric patients and translated into the simplified scheme above.

## Conclusion

The population PK model for Treosulfan is robust and does accurately predict exposure in adults and children. Inclusion of interim PK-data from newly included paediatric patients resulted in a significant update of the model. From a population PK modelling perspective, a slight refined dosing for some patients was recommended. Final dose recommendation will be provided after end of paediatric trials and final population PK modelling.

> Affiliations <sup>1</sup> Venn Life Sciences, Breda, The Netherlands. <sup>2</sup> medac GmbH, Wedel, Germany. <sup>3</sup> Hanover Medical University, Germany. <sup>4</sup> Great Ormond Street Hospital for Children NHS Foundation, London, UK. <sup>5</sup> PD-value BV, Houten, The Netherlands

> > www.vennlifesciences.com