Selective Serotonergic Properties of Low-Dose Pipamperone May Enhance Antidepressant Effect: Preclinical Evidence

Erik Buntinx, MD,¹ Kees Bol, PhD,² Anton Megens, PhD,³ Thomas E. Schlaepfer, MD⁴

¹ PharmaNeuroBoost N.V., and Anima Research Center, Alken, Belgium; ² Kinesis Pharma BV, Breda, The Netherlands ³ Department of Neurosciences, Johnson & Johnson Research and Development, Division of Janssen Pharmaceutica N.V., Beerse, Belgium; * Department of Psychiatry, University Hospital, Bonn, Germany, and The Johns Hopkins University School of Medicine, Baltimore, MD, USA

Introduction

- It is widely accepted that selective serotonin reuptake inhibitors (SSRIs) are a first-line therapy for major depressive disorder (MDD).
- SSRIs generally have a slow onset of therapeutic effect and low rate of response and remission.²
- When response to SSRI monotherapy is unsatisfactory, one approach is to augment therapy with a second medication.³
- Drugs antagonizing 5-HT_{2A} receptors can provide effective augmentation of SSRI monotherapy⁴; the mechanism may involve inhibition of negative feedback on serotonergic neurons that occurs in response to elevated levels of synaptic 5-HT caused by SSRIs.^{5,6}
- Combining a SSRI with a drug that leads to additional and selective inhibition of D₄ and 5-HT₂₄ receptors may generate additive and potentially synergistic antidepressant effects by restoring the balance between dopamine (DA) and 5-HT in the limbic system and cortical areas and by increasing both DA and 5-HT tonus while blocking undesired 5-HT₂ receptor activation
- The neuroleptic pipamperone is a high-affinity antagonist of 5-HT₂₄ and D₄ receptors and a low-affinity antagonist of D, receptors.7,

Objective

• To identify a dose of pipamperone that is high enough to have substantial 5-HT₂₄ antagonism but low enough to have no relevant D₂ antagonism

Methods

Study Desian

- To identify appropriate pipamperone doses, a modified version of the apomorphine-tryptamine-norepinephrine (ATN)-test⁹ was done in rats.
- Pharmacokinetic and pharmacodynamic modeling was used to predict the binding of pipamperone at relevant plasma concentrations to 5-HT_{2A}, D₄, D₂, α_{11} , 5-HT_{act} and H, receptors in patients
- Protocols were reviewed and approved by the Institutional Animal Review Board and complied with the Declaration of Helsinki.

ATN-Test

- Male Wiga Wistar rats (Charles River, Germany; n=5 per dose) were injected with pipamperone (0.04, 0.08, 0.16, 0.31, 0.63, 1.25, 2.5, 5.0, or 10 mg/kg subcutaneous) or control (test solvent) and challenged with apomorphine (1.0 mg/kg intravenous [IV]) at 30 minutes, tryptamine (25 mg/kg IV) at 90 minutes, and norepinephrine (1.25 mg/mL IV) at 120 minutes
- Behavioral and physiologic effects on dopamine, 5-HT, and norepinephrine neurotransmitter systems were scored.
- After apomorphine challenge: stereotypy (0 = absent, 1 = slight, 2 = moderate, 3 = pronounced) and palpebral opening (1 = one quarter open, 2 = half open, 3 = three quarters open, 4 = wide open, 5 = exophthalmos)
- After tryptamine challenge: bilateral clonic seizures of the forepaws (0 = absent, 1 = slight, 2 = moderate, 3 = pronounced), palpebral opening (1-5), and hyperemia and cyanosis of the ears (0 = absent, 1 = slight, 2 = moderate, 3 = pronounced)
- After norepinephrine challenge: α, receptor-mediated mortality at 15 minutes (yes/no

Pharmacokinetic/Pharmacodynamic Modeling

- In vivo K_d values for pipamperone binding to the 5-HT_{2A'} D_{4'} D_{2'} α_1 , 5-HT_{2C'} and H₁ receptors after twice-daily (BID) dosing were predicted from in vitro pK, values obtained from literature and corrected based on results of a plasma protein–binding study.
- Assuming sigmoidal binding (using predicted in vivo K_{d} and Hill coefficient of 1), occupancy of the 5-HT_{2A}, D₄, D₂, α_1 , 5-HT_{2c} and H₁ receptors after BID dosing was predicted for steady-state plasma concentrations of pipamperone that were determined based on literature values in healthy volunteers and assuming linear pharmacokinetics.

Statistical Analysis

• Median effective dose (ED₅₀) and corresponding 95% confidence limits (CLs) were determined using the Spearman-Kaerber estimate¹⁰ with theoretical instead of empirical probabilities to allow tabulation as a function of the slope of the log dose-response curve

Results

ATN-Test

• ED_{so} values for pipamperone in the ATN-test are shown in **Table 1**.

Table 1. Median Effective Doses of Pipamperone for Selected	Effects in the ATN-Test			
Challenge	ED₅₀ (95% CL), mg/kg			
Apomorphine, 1.0 mg/kg IV Inhibition of stereotypy Decrease of palpebral opening	1.55 (0.96, 2.50) 4.40 (3.30, 8.70)			
Tryptamine, 25 mg/kg IV Reversal of cyanosis Inhibition of bilateral convulsions Decrease of palpebral opening	0.34 (0.22, 0.51) 0.13 (0.08, 0.21) 1.78 (1.10, 2.87)			
Norepinephrine, 1.25 mg/kg IV Protection against lethality	>10.0			
ATNL and any line to a territory and a second secon	and the offerstanders			

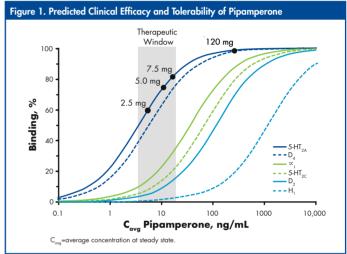
- At very low doses, pipamperone inhibited tryptamine-induced cyanosis (ED₅₀, 0.34 mg/kg) and bilateral convulsions (ED₅₀, 0.13 mg/kg), indicating blockade of peripheral and central 5-HT₂₄ receptors, respectively.
- At higher doses (ED₅₀, 1.55–4.40 mg/kg), pipamperone inhibited apomorphine-induced stereotypy (a D₂ receptor-mediated effect) and decreased palpebral opening after the tryptamine and apomorphine challenges (possible α , receptor-mediated effects)
- Pipamperone doses of up to 10 mg/kg did not affect norepinephrine-induced lethality

Pharmacokinetic/Pharmacodynamic Modeling

 Table 2 shows the in vitro pK₁ values for the 5-HT_{2A}, D₄, D₂, α₁, 5-HT_{2C} and H1 receptors and the expected corresponding plasma concentrations of pipamperone required to achieve these values in vivo.

• These concentrations are above the K, value for the 5-HT₂₄ and D₄ receptors (Table 2)

Table 2. Expected Plasma Concentrations of Pipamperone Required to Achieve In Vitro pK, Values for 5-HT_{2A'} D_{4'}, D_{2'}, a_{1'}, 5-HT_{2c'} and H₁ Receptors In Vivo


	200 40 20 10 200	A second s
Receptor	рК _i , М	Pipamperone Total Plasma Concentration, ng/mL
5-HT _{2A}	8.2	4
5-HT _{2A} D ₄ D ₂	8.0	6
D ₂	6.7	117
α,	7.2	37
5-HT _{2C} H ₁	6.9	71
Н,	5.7	1171

- Predicted receptor occupancy at C_{avg} with 2.5–120 mg/kg pipamperone BID is shown in **Table 3**; pipamperone 5.0 mg BID was predicted to produce a C_{are} that would achieve high occupancy of 5-HT₂₄ and D₄ receptors and limited occupancy of $\rm D_2,\,\alpha_1,\,5\text{-}HT_{2C},\,$ and $\rm H_1$ receptors.
- Simulations predicted 5.0 mg pipamperone BID would produce a steadystate maximum concentration of approximately 18 ng/mL and a steady-state average concentration (C_{ava}) of approximately 11 ng/mL (**Table 3**).

Table 3. Predicted Binding to 5-HT_{2A}, D₄, D₂, α₁, 5-HT_{2C}, and H₁ Receptors at Average Plasma Concentrations Achieved With 2.5–120 mg/kg Pipamperone BID

Pipamperone BID Dose, mg		Binding, %					
	C _{avg} , ng/mL	5-HT _{2A}	D_4	D ₂	α,	5-HT _{2C}	H,
120	263	99	98	69	88	79	18.3
7.5	16	82	74	12	31	19	1.4
5.0	11	75	65	9	23	13	0.9
2.5	5	60	48	4	13	7	0.5
BID-twice daily: C		entration at ste	adv state				

- Figure 1 shows predicted efficacy of pipamperone at C_{avg} in patients in vivo. • Efficacy was predicted with ≥60% occupancy of the 5-HT₂, receptor and ≥40% occupancy of the D₄ receptor, corresponding to doses ≥2.5 mg BID.
- Figure 1 shows predicted tolerability of pipamperone at C_m in patients in vivo. • Adverse events were predicted to occur with >10% occupancy of D₂ and H₁ receptors, corresponding to doses ≥7.5 mg BID.
- The optimal dose range of pipamperone for augmenting antidepressant efficacy in patients without neuroleptic effects was predicted to be 2.5–7.5 mg BID.

Conclusions

- At very low doses (ED₀, 0.13–0.34 mg/kg), pipamperone inhibited tryptamine-induced cyanosis and bilateral convulsions in rats, indicative of blockade of peripheral and central 5-H $_{TA}$ receptors, respectively.
- Inhibition of apomorphine-induced stereotypy, a Dreceptor-mediated effect, occurred only at higher doses (ED, 1.55 mg/kg).
- Addition of low-dose pipamperone to SSRI monotherapy may improve antidepressant efficacy and accelerate symptom resolution in patients with MDD via selective 5-HJ/D₄ receptor antagonism.
- Pharmacokinetic/pharmacodynamic modeling predicted an optimal pipamperone dose between 2.5 and 7.5 mg BID in patients for effectively blocking 5-HT, and D₄ receptors without significantly affecting D, receptors. This dose is well below clinical doses pres ently used in EU countries¹; pipamperone is not approved in the United States.

References

- Vaswani M, et al. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):85-102.
- Trivedi MH, et al. Am J Psychiatry, 2006;163(1):28-40. Thase ME. J Clin Psychiatry. 2009;70 (suppl) 6:4-9.
- Nelson JC and Papakostas GI. Am J Psychiatry. 2009;166(9):980-991.
- Boothman LJ, et al. Br J Pharmacol. 2003;139(5):998-1004.
- Stahl SM. Essential psychopharmacology: neuroscientific basis and practical application. Third ed. Cambridge, UK: Cambridge University Press; 2008. Peremans K, et al. Nucl Med Commun. 2008;29(8):724-729.
- Schotte A, et al. Psychopharmacology (Berl). 1996;124(1-2):57-73.
- 9. Niemegeers CJ, et al. Arch Int Pharmacodyn Ther. 1977;227(2):238-253.
- 10. Tsutakawa RK. Statistical methods in bioassay. Estimation of relative potency from quantal responses. In: Kotz S and Johnson NL, eds. Encyclopaedia of Statistical Science, New York, NY: J. Wiley; 1982.
- 11. Dipiperon (Pipamperondihydrochlorid). Full Prescribing Information, Janssen-Cilag GmbH, Neuss, Germany, 2010.

This research was supported by PharmaNeuroBoost N.V. (Alken, Belgium).

Society of Biological Psychiatry 65th Annual Meeting May 20–22, 2010 New Orleans, LA