Population PK Modeling of Dapivirine Released from Vaginal Rings

S. Zeiser¹, W. Hettema¹, K. Bol¹, P. van den Berg¹, A. Nel¹, J. Nuttall³, E. Spaans¹

Introduction

Dapivirine is a non-nucleoside reverse transcriptase inhibitor with potent antiviral activity against HIV-1. The International Partnership for Microbicides (IPM) has developed a vaginal ring containing dapivirine (25 mg) for use as a microbicide to protect women against HIV infection through sexual intercourse. These rings are placed in the upper third of the vagina where they slowly release the active drug. In two studies IPM 013 and IPM 024 vaginal fluid concentrations of dapivirine were collected from the area of the introitus and cervix by means of tear test strips. These data were analyzed simultaneously by a population PK approach. The analysis was based on 951 samples originating from 41 healthy, HIV-1 negative women.

Objectives

A population PK model was built to describe the time course of vaginal fluid levels of dapivirine at the introitus and cervix in order:

- to predict the drop in vaginal fluid concentrations of dapivirine after various intervals of ring removal;
- to predict vaginal fluid concentrations of dapivirine when the rings are inserted successively every four weeks.

Assumption: The pharmacokinetic of dapivirine is independent of the place of sample measurements (introitus/cervix).

Results

- Inter-individual variability (IVV) was detected for each parameter except for BA1
- Fixed effects parameters could be estimated with high precision (CV<18%)
- Except for IV(V) (CV=60.4%) random parameters were estimated with good precisions (CV=42%)
- Model predicts that concentration at the cervix is around three times higher than concentration at the introitus
- Around 60% of drug release occurs by a first order process
- Beside a slight bias due to lack of data in the initial phase, diagnostic plots showed no substantial bias
- VPCs showed that observed concentrations during the ring wear and washout periods are predicted well

Simulations

In order to investigate the effect of removing a ring for a certain time interval different scenarios were simulated in which a ring was removed for 8, 12 and 24 hours after a wearing time of 28 days. The drop in median concentrations at the introitus and cervix are listed in the table on the right hand side.

- Vaginal fluid concentrations dropped to a value of about 60, 45, and 20% of the level prior to ring loss at 8, 12, and 24h after removal, respectively
- Simulation of successive replacements of vaginal rings every 28 days showed virtually no accumulation in vaginal fluid levels

- After a wearing period of 4 weeks the contribution of the first order release process is negligible (T1/2 around 11 days)
- Steady state concentrations are mainly determined by the zero order release process

Conclusions

Vaginal fluid concentrations of dapivirine at the introitus and cervix could be described adequately by a non-linear mixed effects model. Concentrations at the two locations could be described best when the release of dapivirine was described by a zero order together with a first order process. The model was used to predict vaginal concentrations after several application scenarios. When a ring is removed for 8, 12, or 24 hours after 28 days of wearing, vaginal fluid concentrations drop by 40, 55, and 80%, respectively. Successive replacements show virtually no accumulation.

KINESIS PHARMA NOW KNOWN AS VENN LIFE SCIENCES

www.Kinesis-Pharma.com
www.vennlifesciences.com