

Introduction

Pipamperone (PIP) is a weak antipsychotic used at doses ranging from 80 to 360 mg/d for the treatment of schizoaffective disorder in a number of European countries. At low doses (15–45 mg/d), PIP is highly selective for D2 and D4 receptor antagonism.

The fixed-dose combination of low-dose PIP and CIT (PNB01 or PIPCIT) will be used in this phase III pivotal trial.

Dose finding based on clinical response is complex, particularly in disorders with risk for a high variability in the quantification of severity, like depression.

An alternative powerful tool to select a dosing regimen for a phase III study is to use pharmacokinetic/pharmacodynamic (PK/PD) modelling and simulation analysis.

Purpose of the Study

To identify the potentially optimal dosing combination/regimen of PNB01 through the upcoming phase III pivotal trials using PK/PD modelling and simulation analyses.

Methods

We used the following resources:

- Results from a POC study.
- Results from a phase I DDI study in healthy volunteers.

PK/PD study

- A proof-of-concept study (POC) in 165 depressed patients showed that addition of 5 mg PIP twice daily (BID) to 40 mg citalopram (CIT) once daily (QD) provided clinically relevant benefit over CIT treatment in terms of a superior rate of early and sustained responders.

- Pipamperone was included in plasma at 0.3 and 2 h post-dose at Day 1 and at 1, 2, 4 h and post-dose at Day 2 (predominantly Day 29 or within 7 days after Day 28). Plasma samples were available from 66 patients receiving PIP.

PET study

- 10 healthy subjects received 1 of 4 different treatments with PIP: a single dose of 120 mg (n=2) and of 30 mg (n=2), 10 mg BID for 6.5 days (n=1), and 15 mg QD for 6.5 days (n=3).

- Central nervous RO was assessed by means of PET using a dynamic scanning technique. The tracer 11C-dihydroxy-2-DOPA was used to assess SRT2A receptor. D111 raclopride was used to dose D2 RO. Three scans were made for each subject (including one baseline scan).

- Full PK profiles of PIP were determined in each subject.

PK/PD modelling and simulations combining the POC study and the PET study

- PK/PD modelling was performed to obtain a relationship between PIP plasma concentrations and SRT2A and D2 RO by using the software NONMEM-R. RO was estimated by the sigmoid-rectangular model: \(\frac{C_{\text{max}}}{C_{\text{EC50}}} \pm \text{(C+EC50)} \), C being the estimated PIP plasma concentration at the mid-time of PET assessment and EC50 the PIP concentration corresponding to 50% of the maximum binding.

- SRT2A and D2 RO were plotted against the predicted PIP plasma concentration by the model. These concentration-RO relationships were compared to the effective concentrations obtained in the POC study to obtain a target binding range.

Drug-drug interaction study

- In 3 consecutive sessions, 12 healthy subjects randomly received 5 mg PIP BID (days 1–9) with an additional morning dose on day 10 (20 mg CIT BID) (days 1–9 with an additional morning dose on day 10, 5 mg PIP BID) with 20 mg CIT BID (days 1–9 with an additional morning dose of 5 mg PIP and 20 mg CIT on day 10).

- Plasma concentrations of PIP and CIT were determined, and the PK of steady-state CIT and PIP plasma were compared with the PK of these compounds when they were co-administered.

PK/PD modelling and simulations combining the POC study and the DDI study

- PK simulations were performed for 3 different dosing schedules for PIP (10 mg QD, 15 mg QD, and 5 mg BID) assuming 0%, 25%, and 45% increase, respectively, in plasma concentrations due to CIT interaction and compared with the observed mean concentrations in the POC study.

Phase III Dose Selection for PNB01, a Novel Fixed-Dose Combination Antidepressant Inducing a Faster and Sustained Response

Results

PK/PD modelling and simulations combining the POC study and the PET study in healthy volunteers (Box 1 and Figure 1).

- The POC study showed that addition of 5 mg PIP to CIT 40 mg QD provided clinically relevant benefit over CIT treatment in terms of a superior rate of early sustained responders.

- The final dosing regimen model showed that, at this effective dose, mean binding to SRT2A receptor at steady state fluctuated between 55% and 62%.

- In the POC study, the PIP 15 mg QD dosing mean steady-state plasma concentrations fluctuated between 9.8 and 21 ng/mL and the SRT2A RO varied from 43%–73% QD. D2 receptor occupancy corresponding to 43%–53% for PIP concentrations not exceeding 24.5 ng/mL.

- Based on our previous results and previous data reported in the literature, the low D2 RO was not expected to impact on effectiveness and adverse effects.

- A PET study in schizophrenia patients treated with antipsychotics showed that effective D2 RO states at around 40%.

- In the POC study, we did not observe additional adverse effects of PNB01 when compared with CIT alone.

PK/PD modelling and simulations combining the POC study and the DDI study in healthy volunteers

- From the results that we obtained in the phase I DDI study performed in healthy volunteers, we learned that, after the administration of PIP at 5 mg RO in the presence of CIT at 20 mg BID, CIT increased the maximal PIP plasma concentration by 45% (Figure 2) and the area under the plasma concentration-time curve (AUC) with 42%.

Conclusions

- We demonstrated that, through PK/PD modelling and simulation, the complex dosage schemes usually used for the development of a combination of drugs can be reduced to a few relevant dosages, accelerating the drug development process and reducing trial costs.

- To estimate the preferred dose of PIP to be used in the phase III PNB01 pivotal trial, we used PK/PD modelling and simulation combining the data obtained in a few well-designed independent phase I and phase II studies.

- 1.5 mg QD PIP will be preferred dose to be used in further phase III studies. This dose, that is slightly higher than the 5 mg BID dose used in the POC study, showed —over a period of 24 h—a relevant SRT2A binding, a lack of clinically relevant D2 binding, and delivered PIP plasma levels in the effective dose range.

References

- 1. Sepehri et al. 2006; 29(4):64-70
- 2. Eriksen et al. 2006; 37(4):514-60
- 3. Handels et al. 2015; 2(1):19

Author’s Disclosures

Erik Buntinx is a scientific officer at PharmaNeuroBoost N.V., Alken, Belgium, Kinesis Pharma B.V., Breda, The Netherlands and is consultant to and Chief Scientific Officer in PharmaNeuroBoost.

Ludo Haazen is consultant to and Chief Medical Officer in PharmaNeuroBoost.

Remi Van den Broeck is consultant to and Chief Development Officer in PharmaNeuroBoost. Didier de Chaffoy is consultant and Chief Scientific Officer in PharmaNeuroBoost.

Research supported by PharmaNeuroBoost N.V. Belgium.

24th European College of Neuropsychopharmacology Congress

September 3-7, 2011

Paris, France